
#GlobalAzure

#Luedinghausen

https://twitter.com/Luedinghausen

“Instead of wondering when your
next vacation is, maybe you

should set up a life you don't need
to escape from.” ― Seth Godin

Who is talking?
Stefan Kirner

3

› PASS Chapter Lead Karlsruhe

› Co-Founder scieneers GmbH

› DRIVEN BY DATA since 2002

› Twitter: @KirnerKa

Topics

• Kick-off
• Source Code Integration
• ADF Config best practices
• Azure Pipelines
• Teamwork
• ADF vs. Synapse
• Close

Why DevOps for ADF?

• Lessons learned in (classic)
software development:

• Transparent code base (track
changes)

• Safe development (revert
changes)

• Stable production environment
(CI/CD)

• Avoid boring work (automation)
• Enable teamwork (collaboration)
• Better ADF dev. performance (10x)

https://docs.microsoft.com/en-us/azure/data-factory/source-control

https://docs.microsoft.com/en-us/azure/data-factory/source-control

Different states of ADF development

Starting:
ADF live edit

Using source
code versioning

Dedicated ADF
Environments
& Deployment
Pipelines

Different
branches & Orga

Named Releases,
Continuous Tests

(Most) Useful things
in Azure DevOps for Data Factory?

Setup Source Code Integration

Choose Git server:
• Azure DevOps Git.

Requirements: Azure AD,
Azure DevOps Account &
Project

• Public GitHub or GitHub
Enterprise: public/private
repos supported.
Administrator permissions
for Azure subscription.

https://docs.microsoft.com/en-us/azure/data-factory/source-control

https://docs.microsoft.com/en-us/azure/data-factory/source-control

Source Code Integration

• IDE for Azure Data Factory
browser based in Azure
Portal

• Direct Source Code
integration optional

• Switch between live mode
and source code

• Different development
branches … and adf_publish

https://docs.microsoft.com/en-us/azure/data-factory/source-control

https://docs.microsoft.com/en-us/azure/data-factory/source-control

Setup Source Code Integration
Branch which is used for

publishing
Contains development

artefacts in json Branch which is target of
publishing

Contains ARM template for
Deployment

https://docs.microsoft.com/en-us/azure/data-factory/source-control

https://docs.microsoft.com/en-us/azure/data-factory/source-control

Demo
Source Code Integration for ADF

Config ADF best practices for CI/CD

• Set Name of ADF instances to
x+_[environment] e.g. adf_dev

• Use Azure Key Vault for
password storage, create one
instance per environment

• Use Azure Key Vault integration
in ADF to lookup secrets
whenever possible

• Create linked service for Azure
Key Vault in ADF

How make statics values configurable

• Databricks Access Token is
configurable from Azure Key
Vault

• Other properties as
Workspace URL or a cluster
ID have no direct support
BUT have be changed during
deployment

• HOW to handle this?

Linked services - change parametrization template

• Insert the additional
properties, check ADF
documentation for linked
services special items

• Pass the values for
configuration in Azure
DevOps

Alternative: Using global parameters

• Global parameters could be
included and configured in
ARM template

• Usable in any dynamic
property – could be a path to
a REST resource

Linked Self-hosted Integration Runtimes

ADF on-prem
connect

Linked SHIR
ADF PROD Environment

Linked SHIR
ADF DEV Environment

Central
SHIR

On-
prem

Same setup for SHIR in different environments

Demo
Config ADF

Azure Pipelines

• Azure Pipelines != Azure Data Factory Pipelines ;-)
• Pre- and Post Deployment steps
• ADF ARM Template – what is deployed what not?
• Author in Classic Editor (Visual) vs. YAML (Code)
• Components of ADF ARM template deployments
• Settings

Azure Pipelines – pre and post deployment steps

• ARM Deployment incremental vs. full
• Garbage collection
• De/Activate triggers on target

system during deployment

https://docs.microsoft.com/en-us/azure/data-factory/continuous-integration-deployment#script

https://docs.microsoft.com/en-us/azure/data-factory/continuous-integration-deployment#script

ADF ARM Template – what is deployed what not?

• All parts of Azure Data Factory like linked services,
datasets, pipelines, integrated runtimes…

• Not included is external processing infrastructure and
code parts:
• E.g. EXEC Databricks Notebook
• Included: Databricks Configuration, Dataset definition,

Pipeline with exec task
• Not included: Databricks Workspace, Cluster, Code in

Notebook
• Optionally included: Cluster Configuration
• applies to SSIS, SQL Server Stored Procs…

ADF Deployment – what has to be adapted

• Change connection definitions to linked services in
other environment

• Change credentials & secrets (or use different Azure
Key Vaults)

• Change central properties like name of Data Factory
and paths

Azure Pipelines: Classic oder YAML?

Pro Classic:
• Easiest way
• many 3rd Party

components available

Pro YAML:
• Transparent code
• Versionable in Repo
• Good Overview
• Widely used

Azure Pipelines - Classic

Azure Pipelines - YAML

Use snippets

Azure Pipelines – YAML: DRY principle

Staging template YML:
Validation

Deploy resources
Dependencies

Pipeline YML:
Checkout resources
Define parameters

Set variables

EXEC

TEST

PROD

DEV

Deployment
Logic

Dont Repeat Yourself

Azure Pipelines - Settings

• Define Service Connections
under Project Settings

• Define your Environments
once and reuse them

Azure Pipelines - Settings

• Permissions needed for new
pipelines – watch requests in
DevOps

• Link your Key Vault instances
under Pipelines Library to
access your secrets

Demo
Using Azure Pipelines for Deployments

Teamwork #1 build releases

https://docs.microsoft.com/en-us/azure/data-factory/continuous-integration-deployment

• Working in feature branches
• Pull to master for merging
• Publish in ADF GUI to DEV
• Generate Release manual

from version in git
(adf_publish branch)

• Deploy that versions to
QA/PROD environments

https://docs.microsoft.com/en-us/azure/data-factory/continuous-integration-deployment

Teamwork #2 trigger releases

https://docs.microsoft.com/en-us/azure/data-factory/continuous-integration-deployment-
improvements#overview

• Like before but using Azure
pipeline to simulate „publish“
step from ADF GUI

• Could be triggered by user or
by commit into a branch
(master)

• ARM templates generated from
repo sources (json Objects) to
repo target folders as artifact

• Release to any ADF
environment possible (DEV not
necessary)

https://docs.microsoft.com/en-us/azure/data-factory/continuous-integration-deployment-improvements#overview

Teamwork #2 Notes about releases

• Attention: existing git repo config of target is removed
when deploying the ARM template

• The doc to implement this from MS is not completely
correct:
• current version of azure-data-factory-utilities is 0.1.5

• package.json has to be on top level of repo
• Make sure that all folders fit to your setup
• Npm run start vs. build confusion

https://docs.microsoft.com/en-us/azure/data-factory/continuous-integration-deployment-improvements#overview

https://docs.microsoft.com/en-us/azure/data-factory/continuous-integration-deployment-improvements#overview

Demo
Named releases

ADF vs. Synapse

• Azure Synapse Workspace & Studio as clamp for data
services: Synapse DBs, ADF, Notebooks, Power BI…

• Source code integration since late 2020
• Most ADF stuff supported
• Project artefacts of differnt components stored as whole

solution in Synapse, separate branch for „adf_publish“
• Not everything working smooth now, will be solved in time

When fully working this will add value to simplicity for DevOps in
Analytics projects!

Finally – what about the DoD?

There is no Definition of Done which is valid for every project
But getting better in Application Lifecycle Management makes
it a lot easier to define a very good one!

