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Condition Monitoring at EnBW: Asset RADAR

CURRENT STATE


Monitoring of ~450 Wind Turbines in Germany and other 
parts of Europe


Monitoring of all relevant components


Multiple detection methods


Bundled in proprietary software


Alerts created are reviewed by diagnosticians


OBJECTIVES


Monitoring of all units operated by EnBW (also including 
e.g. solar)


Minimize on-site maintenance by technicians 


Usage of all data to ensure interventions as early as 
possible


Continuous development and improvement
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Condition Monitoring at EnBW: Data Sources

SUPERVISORY CONTROL AND DATA ACQUISITION (SCADA)


Data continuously collected from sensors


Temperatures


Pressures


Currents


…


Data aggregated in 10 minute intervals


Mean


Maximum


Minimum


Standard Deviation
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Condition Monitoring at EnBW: SCADA
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Condition Monitoring at EnBW: Data Sources

SUPERVISORY CONTROL AND DATA ACQUISITION (SCADA)


Data continuously collected from sensors


Temperatures


Pressures


Currents


…


Data aggregated in 10 minute intervals


Mean


Maximum


Minimum


Standard Deviation


OSCILLATION DATA


Acceleration data collected from multiple sensors 
in different locations on the drive train


Not measured continuously, but in irregular 
intervals


High sampling rate (up to 50 kHz), short “clips” of 
data


Allows for highly specific analysis of individual 
defect patterns
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Condition Monitoring at EnBW: Oscillation
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Anomaly Detection

DEFINITION OF ANOMALY


An observation that can be considered 
significantly outside what is “normal”


Requires some idea what constitutes “normal”


That is very much non-trivial


Statistically: Given input data X, an anomaly is a 
sample with a low value for its pdf, p (X)


Calculating p, incidentally, is also very much non-
trivial
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Anomaly Detection: Some More Complications

Multivariate anomalies: data that does not look 
suspicious from any univariate point of view, may 
still be anomalous 


The higher the dimensionality, the harder this gets


Rate of anomalies is unknown


What exact value for p is sufficiently small?


How do we determine “normality” given data 
that may or may not  be anomalous?


Time series are especially difficult: samples are 
not independent variables
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Predictive Modeling: Idea

Expectation: in a healthy system, there should be 
robust relationships between states of 
components


Example: the power output dominantly depends on 
wind speed and other environmental conditions


Therefore, statistical modeling should deliver good 
predictions of first from the former


Deviations can be explained by defects
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ENVIRONMENTAL INPUTS


Wind speed & Direction


Air Temperature


Air Pressure

All other Signals
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Predictive Modeling: Idea
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Predictive Modeling: Idea
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Predictive Modeling: Idea
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Predictive Modeling: Idea
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Predictive Modeling: Thresholds

16

Arguably biggest challenge: when is a model 
deviation “unusual”?


Model deviations in test set used as a gauge
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Predictive Modeling: Thresholds
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Arguably biggest challenge: when is a model 
deviation “unusual”?


Model deviations in test set used as a gauge


Statistical modeling of distribution
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Predictive Modeling: Thresholds
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Arguably biggest challenge: when is a model 
deviation “unusual”?


Model deviations in test set used as a gauge


Statistical modeling of distribution


Some quantile of modeled distribution taken to be 
alert threshold
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Predictive Modeling: Specific vs. Generic
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VERY GENERIC MODELS THAT TAKE LOTS OF INPUTS


Fewer models


Complete monitoring


Hard to interpret


No use of engineering knowledge
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Predictive Modeling: Specific vs. Generic

VERY GENERIC MODELS THAT TAKE LOTS OF INPUTS


Fewer models


Complete monitoring


Hard to interpret


No use of engineering knowledge
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SPECIFIC MODELS WITH FEW INPUTS


A lot of models


Not every signal is necessarily monitored


Each model indicates small set of diagnoses


Engineering knowledge weaved into models
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Future Plans: Automatic Diagnoses
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Future of wind energy: more units


Scalability of maintenance: less manual work


Models need to give more precise pointers to 
facilitate diagnoses


Idea: Meta model that learns from previous 
diagnoses of defects
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Challenges: Heterogeneity
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Manufacturers
Resolutions

Components
Additional Systems

Data Sources

Siemens

Vestas

SenvionGE

Enercon

V90
V126

10 min
1 s

50 kHz 24 kHz

10 Hz

Station Types

Controllers

SWT-2.3-93

SWT-3.6-120

Bearings

Pitch system

GeneratorGears

Cooling System

Oscillation

SCADA
Status Codes

Weather + Seasons

Ice Detection

Structural Monitoring
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Challenges: Labels
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Incomplete labels


Defects are actually very rare overall


~450 units


~7 years of average lifetime


~80 monitored signals per unit on average
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Challenges: Labels
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Incomplete labels


Defects are actually very rare overall


~450 units


~7 years of average lifetime


~80 monitored signals per unit on average


252,000 years of data (with 10 min resolution)

252,000 years of unlabeled data
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Challenges: Labels
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Incomplete labels


Defects are actually very rare overall


~450 units


~7 years of average lifetime


~80 monitored signals per unit on average


252,000 years of data (with 10 min resolution)


0.05% of which are labeled as exhibiting defects

252,000 years of unlabeled data 160 years of “defect” data
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Solutions: Anomaly Space
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Individual signals are affected by heterogeneity of 
units


One signal on one unit may have a very different 
characteristic than on another


Slight differences in installation


Replacement


A robust “signature” of a defect cannot be learned 
from this


Alternative: individual anomaly detectors as 
feature space


Only the combination of multiple detectors enables  
automatic diagnoses
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Anomaly Space: Example
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POWER OUTPUT MODEL


Say we have a model that attempts to 
predict the power output of a wind turbine


Inputs:


Wind speed


Ambient temperature


Nacelle azimuth direction


Wind direction


This model now shows unusual deviations
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Anomaly Space: Example
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DEVIATION FROM PARK AVERAGE


Close-by units should exhibit comparable 
behavior


However, no significant deviations visible
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Anomaly Space: Example
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COMPARING REDUNDANT SENSORS


Anemometers are redundant at every wind 
turbine


The wind turbine itself is actually a very 
reliable anemometer


Comparing the three shows that one of 
them is actually defective
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Takeaways

Anomaly Detection of multiple time series poses a 
difficult problem


Predictive Modeling is a way to monitor stability of 
multivariate relationships


To ensure scalability, expert knowledge has to be 
used to train meta models


Heterogeneity and lack of proper labels remain 
biggest challenges
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