Raised by Pandas, striving for more:
An opinionated

introduction to Polars

scleneers’

DRIVEN BY DATA

We gain knowledge from data and

create value. For our customers,
society and ourselves.

v

http://www.techtiefen.de/
https://twitter.com/NicoKreiling

DRIVEN BY DATA

B vaex_ feather-4.9.2

AT

Scleneers

<)

=]
©
o
o
o
o
X
0
8
o

I -

=

pandas-1.4.2

=

A\ N

polars-0.13.51

i, W

Solution

?

w
=
[
qu)
-~
o
()
(@b
O
|
(@b
o
—
qu)
(-
o
v =
-
| - (@b
(C < x
N OV unuunu ununnn b (]
— (@) © 99682093wmw..t
| o n © O ®
y— 111907mr g
o i - o< ~——mOQNNSOES
pp— AN S e - < < -0 Q
—_ 0] E® e O
I mlom 2 scfg
~ —_ =
Ie .mad e mbplvo.m u
= 5 S o = £5 <
- = 9 = ==
b} c = O
> = 2y = <
o 7] =
= > o & 3 @ =
- lab) g2 < © 5
0O o BIEE & -
Q@i 2 D OAND—-—ONDO-—=—D—= D —
(C o %8 2 BT T HONOONOSHS =
! S o bt EOQUVLWVOTWVWYWWWW
¥ 2@ Q 59999999999 %
0w o = RN RN N RN RN RN RN IR ENEEY
g o L < o =k =k=E=k=R=Ek=E=E=E=E=K=
o g = O NANNNNNNNNNN N
O ;-] x
(@] e oa T 2
O..mg (%) [©
c © -
C T = = .
S 823 B 8 .3 2oy, | B
0w = [} 4 b e |
- St v < 2 > R bl B e i
S 0w v 9 SR~ mOeNOO g AN
0 “— ® o E R SO Nrrr~~r~<fmONO O
< @ © - = o
D 2 L9 @ o 8 o8 =
o S=¢ B T a T SE2E ol T
— 2 o) c o <] »
o SEE % £ £ 5gI:iSS8.:..u9 ©
-5 8@ s < © E » sSES8d2R250 5500
() L9 8= A Q *o0o=0d@PRISOLE O3 3
0 G c & 82 S X I > 5000TEaoaTc< 0T 00O
= © -+~ p
i e D >3 g g2 ¥ 3 cHNEROEEROmEOO
o - = © Q =
(7 R cE88E 2% % &
= © £6352 2§ 2 % o
r ©
@b} xaow -] T
o e ol
(@b
i
= =

Pandas isn't perfect scieneers .

DRIVEN BY DATA

Critique on Pandas from the author Wes McKinney himself

Started Pandas in April 2008 as a side-project
at night-time and on weekends

“I didn't know much about software engineering
or even how to use Python's scientific computing
stack well back then. My code was ugly and slow.’

Wes McKinney
(2017)

’

Taken from: https://wesmckinney.com/blog/apache-arrow-pandas-internals/ (2017)

https://wesmckinney.com/blog/apache-arrow-pandas-internals/

Pandas problems are well known - at least since 20177 scleneers ¥

DRIVEN BY DATA

In his article, Wes McKinney also highlights 11 points, where Pandas lacks

1.

Internals too far from "the metal"

. No support for memory-mapped datasets

. Poor performance in database and file ingest / export

. Warty missing data support

. Lack of transparency into memory use, RAM management

Weak support for categorical data

. Complex groupby operations awkward and slow

. Appending data to a DataFrame tedious and very costly

2
3
4
5
6.
7
8
9

. Limited, non-extensible type metadata

10. Eager evaluation model, no query planning

| strongly feel that Arrow is a key
technology for the next generation
of data science tools.

[...] building a faster, cleaner core
pandas implementation, which we
may call pandas2.

Source:
https://wesmckinney.com/

11. "Slow", limited multicore algorithms

blog/apache-arrow-

pandas-internals/ (2017)

https://wesmckinney.com/blog/apache-arrow-pandas-internals/
https://wesmckinney.com/blog/apache-arrow-pandas-internals/
https://wesmckinney.com/blog/apache-arrow-pandas-internals/

In Case of

_performance >>>
Issues, follow
ARROW

Gain 1: Apache Arrow scieneers ¥

DRIVEN BY DATA

Apache Arrow enables an efficient data access across libraries and languages

* |[nitial Release 2016

e Arrow standardizes a columnar data
format across languages

* “has a very cache-coherent data
structure”(Ritchie Vink)

* Natively supports missing data
through additional validity bits

* Much better and faster string support

Parquet

Cassandra

Parquet

Cassandra

Source: https://arrow.apache.org/overview/

https://www.ritchievink.com/blog/2021/02/28/i-wrote-one-of-the-fastest-dataframe-libraries/

Arrow does solve many Pandas Problems scieneers ¥’

DRIVEN BY DATA

Those are exactly the areas, where Pandas 2.0 made some big steps!

1. Internals too far from "the metal"

2. No support for memory-mapped datasets

7. Complex groupby operations awkward and slow

: g
jil pandas 8 i

L HTHIFE
jil pandas [i}

10. Eager evaluation model, no query planning

11. "Slow", limited multicore algorithms

Gain 2: Single Instruction, Multiple Data (SIMD) screncers W

DRIVEN BY DATA

Handle full vectors instead of single numbers in a single CPU cycle

L

’O This is also why you shoy|g
avoid pandas apply!

MIMD — Every Instruction is treated on its one SIMD — Handle all data at once

Polars Expression APl is very expressive scieneers ‘¥

DRIVEN BY DATA

Which makes it easier to utilize SIMD instructions

. import polars as pl
works very similar to

pd.DataFrame, just without indexes Pandas Polars metric
i64 i64 str

gh_stars = pl.DataFrame|({

"year": [2019,2020,2021,2022,2023], 2343 Dl “pulrequests”

is your go to function "Dask": [3763,5853,7487,9204,10586], 2850 niealicduestes
toaddorchangecolumns "Pandas": [166@8, 21835, 26996, 31544’ 362@8], 3585 96 "pullrequests"
"Polars": [, ,544,3914, 11128] gl lliEaes =T

. . \ . 5007 "pullrequests"
) }).with_columns/(pl.lit("stars").alias("metric")) PeTee
creates a suitable vector a 16608 "stars"

single value (just like in spark) — Tghara

gh_pullrequests = pl.DataFrame({
"year": [2023,2022,2021,2020,2019],
defines the name of the "Dask"': [26886, 23365, 19282, 13973, 1@464];
columns (without this, it overwrites the "Pandas": [5007, 4331, 3585, 2996, 2343],
modified column) "Polars": [3542, 1365, 96, , 1,

}).with_columns(pl.lit("pullrequests").alias("metric"))

26996 "stars"
31544 "stars"
36208 "stars"

df = pl.concat([gh_stars, gh_pullrequests]).sort(["metric","year"])
As Polars has no indexes, there is only
one function

Polars Expression APl is very expressive scieneers ‘¥

DRIVEN BY DATA

Which makes it easier to utilize SIMD instructions

is probably the most typed function: Polars provides many expressions out of the is similar to . just for
Reference one or more columns box, such as or multiple columns

stats = df.with_columns([
pl.col(["Dask","Pandas","Polars"]).diff().over/("metric").prefix("delta "),
pl.col(["Dask","Pandas","Polars"]).pct_change().over("metric").prefix("perc_")

1)

year Dask Pandas Polars metric delta_Dask delta_Pandas delta_Polars perc_Dask perc_Pandas perc_Polars
i64 i64 i64 i64 str i64 i64 i64 fe4 f64 f64 isa powerfull keyword to limit the
option range by given columns
2019 10464 2343 null "pullrequests" null null null null null null
2020 13973 2996 null "pullrequests" 3509 653 null 0.33534 0.278703 null
2021 19282 3585 96 "pullrequests" 5309 589 null 0.379947 0.196595 null
2022 23365 4331 1365 "pullrequests" 4083 746 1269 0.211752 0.208089 13.21875
2023 26886 5007 3542 ‘"pullrequests" 3521 676 2177 0.150695 0.156084 1.5694872
2019 3763 16608 null "stars" null null null null null null
2020 5853 21835 null "stars" 2090 5227 null 0.555408 0.314728 null
2021 7487 26996 544 "stars" 1634 5161 null 0.279173 0.236364 null
2022 9204 31544 3914 "stars" 1717 4548 3370 0.229331 0.168469 6.194853
2023 10586 36208 11128 "stars" 1382 4664 7214 0.150152 0.147857 1.843127

Resulting DataFrame

Polars API - Key Take-Aways scleneers b

DRIVEN BY DATA

* Polars has no indexes

* Powerfull Expression APl to better use SIMD performance boost

- over keywordis more concise then groupby and join combination
* Polars supports both: eager and lazy execution

%%time %%time

df = pl.read_parquet("berlin_stations.parquet") lazy_df = pl.scan_parquet("berlin_stations.parquet")
df.head() lazy_df.head().collect()

CPU times: user 935 ms, sys: 654 ms, total: 1.59 s CPU times: user 23.2 ms, sys: 10.7 ms, total: 33.8 ms
Wall time: 933 ms Wall time: 14.9 ms

read trigger eager execution (imperative) scan trigger lazy execution (declarative)

DRIVEN BY DATA

Query Optimization sc.eneerW

The declarative DSL of Polars allows query optimization

* Reduce Cache misses

* Optimizing branch predictions

* Drop unnecessary computations

* Rewrite execution order and operations

The Polars APl is very expressive and flexible scieneers o

DRIVEN BY DATA

This makes it fast

1. Internals too far from "the metal" il
2. No support for memory-mapped datasets i
3. Poor performance in database and file ingest / export il pandgs il
4. Warty missing data support |l pandas llﬁi;!i!igﬁﬂﬁu..
5. Lack of transparency into memory use, RAM management Il pandas A
6. Weak support for categorical data il pandas il

8. Appending data to a DataFrame tedious and very costly j2l pandas ligiii!i!iiﬁlliih.

9. Limited, non-extensible type metadata sparke [pandas -

11. "Slow", limited multicore algorithms

Gain §: “Embarrassingly parallel”

Having a well defined DSL enables better parallelization

B CORE9
B CORE10

> CORER Without Parallelization (most
oL ; of pandas operations)
QA S s ‘ CORES5
| & ".«'
B S rvas

{
i

£

Multi-Core Parallelization

done wrong

30|eneers°¥°

DRIVEN BY DATA

Embarrassingly parallel task execution scieneers o

DRIVEN BY DATA

Polars parallelizes everything that does not require communication

e aggregations across different :
columns can be parallelized — :
easily 1 / e
* Groupby-apply operations can o |) :
be also be parallized b o y
b 4 b 4 é b 7)

https://www.ritchievink.com/blog/2021/02/28/i-wrote-one-of-the-fastest-dataframe-libraries/

smeneers"'

DRIVEN BY DATA

Prepare data for tasks that require communication

/dea 1: To simply split data by thrads does not work well

/ thread 0 \
............... a ; - .
. e[e Data is split into threads
L iy . | Each thread applies operation
et indepdently
b [4, 6] .
e weadt) There is no guarantee, that a key
¢ | 23 doesn't fall into multiple threads
o L ~ Makes an extra
b 46 L synchronoization step
.............. (- =) necessary

SYNC + REBUILD HAT/HTABLE

https://www.ritchievink.com/blog/2021/02/28/i-wrote-one-of-the-fastest-dataframe-libraries/

Prepare data for tasks that require communication scieneers ¥

DRIVEN BY DATA

|dea 2: Split data but allows threads to communicate via mutex is to slow

/ thread 0 \ .
X y el
.............. ! R / main thread \
HASH ..

4 : utex . oy o
:D / ! A e Dataissplitinto threads
c 2
e J i s « Threads have a shared storage
i I PP . . b (mutex)to prevent duplicates
hread .
b | 4 e e 3 However different threads block
2 | s HASH \ y each other(especially with higher
b6 N y prallelization)
.............. 4 s
LOCK + BUILD HASHTABLE

—

https://www.ritchievink.com/blog/2021/02/28/i-wrote-one-of-the-fastest-dataframe-libraries/

Prepare data for tasks that require communication scieneers ¥

DRIVEN BY DATA

ldea 3: Give threads access to all data, so they can work independently without duplicaters

.
.
.
.

/ thread 0
X y
R a [1,5]
a 1| h(x) % 0 ==
. b [4,6]
c 2
® 3 ‘. ,"
A 2 thread 1 N\
a 5
h(x) % 1 == c [2,3]
b 6
HASH + BUILD HASHTABLE

—

https://www.ritchievink.com/blog/2021/02/28/i-wrote-one-of-the-fastest-dataframe-libraries/

a [1, 5]
b (4, 6]
c [2,3]

CHEAP COMBINE

I:>

All threads load the full data

Threads independently decide
which values to operate on by
using a modulo function

Results can be cheaply combined
by trivial concatination

The Polars APl is very expressive and flexible scieneers o

DRIVEN BY DATA

This makes it fast

1. Internals too far from "the metal”
2. No support for memory-mapped datasets
3. Poor performance in database and file ingest / export |4l pandas .:!iiﬁi!iﬂiﬂﬁ"'
4. Warty missing data support (4l pandas -
5. Lack of transparency into memory use, RAM management Il pandas A
6. Weak support for categorical data il pandas il
7. Complex groupby operations awkward and slow g
8. Appending data to a DataFrame tedious and very costly jil pandas il
9. Limited, non-extensible type metadata i pandas Ml
10. Eager evaluation model, no query planning g
A

But wait, there is more...

* Written in Rust
e Super fast
* No hard python dependencies

e Qut-of-Memory Sorting and Deduplicate
operations

* Cheap switching between polars and
pandas dataframes thanks to Apache
Arrow

smeneers';'

DRIVEN BY DATA

» ~ pip install polars
Collecting polars
Downloading polars-0.17.2-cp37-abi3-macosx_10_7_x86_64.whl (16.3 MB)
eta
Requirement already satisfied: typing_extensions>=4.0.1 in ./.pyenv/versi
Installing collected packages: polars
Successfully installed polars-0.17.2

import polars as pl

from ..paths import DATA_DIR

qll = (
pl.scan_csv(f"{DATA_DIR}/reddit.csv")
.with_columns(pl.col("name").str.to_uppercase())
.filter(pl.col("comment_karma") > 0)
.sink_parquet (f"{DATA_DIR}/reddit.parquet")

)

%%timeit
df = pdf.to_pandas()
pdf2 = pl.from_pandas(df)

1.26 ms * 32.3 us per loop

Polars ticks all of Wes McKinney pandas pain points scieneers ¥’

DRIVEN BY DATA

Written in Rust Polars can get along with minimal computation and memory footprint

3. Poor performance in database and file ingest / export |4l pandas .:!iiﬁi!iﬂiﬂﬁ"'
4. Warty missing data support |l pandas .:!ﬁi!i!iﬂif!ﬁ"'
5. Lack of transparency into memory use, RAM management Il pandas A
6. Weak support for categorical data il pandas il
7. Complex groupby operations awkward and slow .:!iiﬂi!iilif!ﬁ"'
8. Appending data to a DataFrame tedious and very costly jil pandas il
9. Limited, non-extensible type metadata i poncas il

10. Eager evaluation model, no query planning g

11. "Slow", limited multicore algorithms il

Polars is great for its speed, but can't replace pandas (yet) scieneers ¥

DRIVEN BY DATA

My personal list of things | love and miss in polars

Things | love about Polars ' Things I miss in Polars Q

* The speed!!! * Dot-Notation to autocomplete column

e The Support of eager and |azy mode names (eSpeCia”y within nOtebOOKS)

- Expression APl and over-keyword * No Plotting API

- That API-code is nicely structured Compatibility with other libraries (scikit-

learn, seaborn, pytorch...)
* The typing efficiency within the API

Good first Use-Cases: Not recommended Use-Cases :

* datawrangling pipelines e Data exploration
* Non-trivial feature-engineering * Python Glue-Code projects

D&A

Further reading:
Ritchie Vink giving some speed insights into Polars
Apache Arrow and the "10 Things | Hate About pandas"

“Polars in a nutshell” talk by Ritchie Vink
Comparison of Pandas 2.0 with other frameworks
Comparison of many popular dataframe libraries

https://www.ritchievink.com/blog/2021/02/28/i-wrote-one-of-the-fastest-dataframe-libraries/
https://wesmckinney.com/blog/apache-arrow-pandas-internals/
https://www.youtube.com/watch?v=XAU3dUjaX38
https://airbyte.com/blog/pandas-2-0-ecosystem-arrow-polars-duckdb
https://www.datarevenue.com/de-blog/pandas-skalieren-ein-vergleich-von-dask-ray-modin-vaex-und-rapids

Backup: Speed Comparison Pandas 2.0 scieneers ¥

DRIVEN BY DATA

join groupby2014

0568 5G8 m

%
/ basic questions
. / Input table: 1,000,000,000 rows x NA columns (NA GB)
E / [duckdb-latest* 0.8.0 2023-04-13 76s
8 / B Polars 0.16.18 2023-04-05 127s
/ [J DuckDB* 0.7.1 2023-04-05 143
’ / B ClickHouse ~ 22.12.1.17522023-03-24 189s
V / B data.table 1149 2023-03-24 191s
/ / B spark 3.3.2 2023-03-24 389s
] Arrow 11.003 2023-04-12 624s
/ /
? % / / [(py)datatable 1.1.0a0 2023-03-24 870s
— /l A A A /A B pandas 2.0.0 2023-04-07 2015s B First time
@] 0 I ® 7 B dask 2023.3.2 2023-04-07 3990s B Second time
ey B Modin see README pending

Solution polars-0.16.10 M pandas-2.0.0rc0

https://twitter.com/RitchieVink/status/1632334005264580608 https://duckdblabs.github.io/db-benchmark/

