
Raised by Pandas, striving for more:
An opinionated

introduction to Polars

Nico Kreiling
PyCon DE, 2023

Nico Kreiling
Data Scientist @ scieneers

Host of techtiefen.de NicoKreiling

We gain knowledge from data and
create value. For our customers,

society and ourselves.

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

cuDF

http://www.techtiefen.de/
https://twitter.com/NicoKreiling

Why should you care about Polars?
There are a couple of “too good to be true”-like performance-benchmarks

Exectuion time TPCH Benchmark (with reading parquet)

Exectuion time TPCH Benchmark (in Memory)

Pandas isn’t perfect
Critique on Pandas from the author Wes McKinney himself

Taken from: https://wesmckinney.com/blog/apache-arrow-pandas-internals/ (2017)

Started Pandas in April 2008 as a side-project
at night-time and on weekends

“I didn't know much about software engineering
or even how to use Python's scientific computing
stack well back then. My code was ugly and slow.”

Wes McKinney
(2017)

https://wesmckinney.com/blog/apache-arrow-pandas-internals/

Pandas problems are well known – at least since 2017?
In his article, Wes McKinney also highlights 11 points, where Pandas lacks

I strongly feel that Arrow is a key
technology for the next generation

of data science tools.

[…] building a faster, cleaner core
pandas implementation, which we

may call pandas2.

Source:
https://wesmckinney.com/
blog/apache-arrow-
pandas-internals/ (2017)

1. Internals too far from "the metal"

2. No support for memory-mapped datasets

3. Poor performance in database and file ingest / export

4. Warty missing data support

5. Lack of transparency into memory use, RAM management

6. Weak support for categorical data

7. Complex groupby operations awkward and slow

8. Appending data to a DataFrame tedious and very costly

9. Limited, non-extensible type metadata

10. Eager evaluation model, no query planning

11. "Slow", limited multicore algorithms

https://wesmckinney.com/blog/apache-arrow-pandas-internals/
https://wesmckinney.com/blog/apache-arrow-pandas-internals/
https://wesmckinney.com/blog/apache-arrow-pandas-internals/

Gain 1: Apache Arrow
Apache Arrow enables an efficient data access across libraries and languages

Source: https://arrow.apache.org/overview/

• Initial Release 2016
• Arrow standardizes a columnar data

format across languages
• “has a very cache-coherent data

structure” (Ritchie Vink)
• Natively supports missing data

through additional validity bits
• Much better and faster string support

https://www.ritchievink.com/blog/2021/02/28/i-wrote-one-of-the-fastest-dataframe-libraries/

1. Internals too far from "the metal"

2. No support for memory-mapped datasets

3. Poor performance in database and file ingest / export

4. Warty missing data support

5. Lack of transparency into memory use, RAM management

6. Weak support for categorical data

7. Complex groupby operations awkward and slow

8. Appending data to a DataFrame tedious and very costly

9. Limited, non-extensible type metadata

10. Eager evaluation model, no query planning

11. "Slow", limited multicore algorithms

Arrow does solve many Pandas Problems
Those are exactly the areas, where Pandas 2.0 made some big steps!

V2

V2

V2

V2

V2

V2

Gain 2: Single Instruction, Multiple Data (SIMD)
Handle full vectors instead of single numbers in a single CPU cycle

MIMD – Every Instruction is treated on its one SIMD – Handle all data at once

This is also why you should avoid pandas apply!

Polars Expression API is very expressive
Which makes it easier to utilize SIMD instructions

pl.DataFrame works very similar to
pd.DataFrame, just without indexes

pl.lit creates a suitable vector a
single value (just like in spark)

with_columns is your go to function
to add or change columns

Resulting DataFrame:

As Polars has no indexes, there is only
one sort function

alias defines the name of the
columns (without this, it overwrites the
modified column)

import polars as pl

gh_stars = pl.DataFrame({
"year": [2019,2020,2021,2022,2023],
"Dask": [3763,5853,7487,9204,10586],
"Pandas": [16608, 21835, 26996, 31544, 36208],
"Polars": [None, None,544,3914, 11128]

}).with_columns(pl.lit("stars").alias("metric"))

gh_pullrequests = pl.DataFrame({
"year": [2023,2022,2021,2020,2019],
"Dask": [26886, 23365, 19282, 13973, 10464],
"Pandas": [5007, 4331, 3585, 2996, 2343],
"Polars": [3542, 1365, 96, None, None],

}).with_columns(pl.lit("pullrequests").alias("metric"))

df = pl.concat([gh_stars, gh_pullrequests]).sort(["metric","year"])

Polars Expression API is very expressive
Which makes it easier to utilize SIMD instructions

pl.col is probably the most typed function:
Reference one or more columns

Polars provides many expressions out of the
box, such as diff or pct_change

prefix is similar to alias, just for
multiple columns

over is a powerfull keyword to limit the
option range by given columns

Resulting DataFrame

stats = df.with_columns([
pl.col(["Dask","Pandas","Polars"]).diff().over("metric").prefix("delta_"),
pl.col(["Dask","Pandas","Polars"]).pct_change().over("metric").prefix("perc_")

])

Polars API – Key Take-Aways

• Polars has no indexes
• Powerfull Expression API to better use SIMD performance boost
• over keyword is more concise then groupby and join combination
• Polars supports both: eager and lazy execution

read trigger eager execution (imperative) scan trigger lazy execution (declarative)

Query Optimization

• Reduce Cache misses
• Optimizing branch predictions
• Drop unnecessary computations
• Rewrite execution order and operations

The declarative DSL of Polars allows query optimization

1. Internals too far from "the metal"

2. No support for memory-mapped datasets

3. Poor performance in database and file ingest / export

4. Warty missing data support

5. Lack of transparency into memory use, RAM management

6. Weak support for categorical data

7. Complex groupby operations awkward and slow

8. Appending data to a DataFrame tedious and very costly

9. Limited, non-extensible type metadata

10. Eager evaluation model, no query planning

11. "Slow", limited multicore algorithms

The Polars API is very expressive and flexible
This makes it fast

V2

V2

V2

V2

V2

V2

Gain 3: “Embarrassingly parallel”
Having a well defined DSL enables better parallelization

Multi-Core Parallelization
done wrong

Without Parallelization (most
of pandas operations)

Embarrassingly parallel task execution
Polars parallelizes everything that does not require communication

https://www.ritchievink.com/blog/2021/02/28/i-wrote-one-of-the-fastest-dataframe-libraries/

• aggregations across different
columns can be parallelized
easily
• Groupby-apply operations can

be also be parallized

Prepare data for tasks that require communication
Idea 1: To simply split data by thrads does not work well

https://www.ritchievink.com/blog/2021/02/28/i-wrote-one-of-the-fastest-dataframe-libraries/

• Data is split into threads
• Each thread applies operation

indepdently
• There is no guarantee, that a key

doesn’t fall into multiple threads
• Makes an extra

synchronoization step
necessary

Prepare data for tasks that require communication
Idea 2: Split data but allows threads to communicate via mutex is to slow

https://www.ritchievink.com/blog/2021/02/28/i-wrote-one-of-the-fastest-dataframe-libraries/

• Data is split into threads
• Threads have a shared storage

(mutex) to prevent duplicates
• However different threads block

each other (especially with higher
prallelization)

Prepare data for tasks that require communication
Idea 3: Give threads access to all data, so they can work independently without duplicaters

https://www.ritchievink.com/blog/2021/02/28/i-wrote-one-of-the-fastest-dataframe-libraries/

• All threads load the full data
• Threads independently decide

which values to operate on by
using a modulo function

• Results can be cheaply combined
by trivial concatination

1. Internals too far from "the metal"

2. No support for memory-mapped datasets

3. Poor performance in database and file ingest / export

4. Warty missing data support

5. Lack of transparency into memory use, RAM management

6. Weak support for categorical data

7. Complex groupby operations awkward and slow

8. Appending data to a DataFrame tedious and very costly

9. Limited, non-extensible type metadata

10. Eager evaluation model, no query planning

11. "Slow", limited multicore algorithms

The Polars API is very expressive and flexible
This makes it fast

V2

V2

V2

V2

V2

V2

But wait, there is more…

• Written in Rust
• Super fast
• No hard python dependencies

• Out-of-Memory Sorting and Deduplicate
operations

• Cheap switching between polars and
pandas dataframes thanks to Apache
Arrow

1. Internals too far from "the metal"

2. No support for memory-mapped datasets

3. Poor performance in database and file ingest / export

4. Warty missing data support

5. Lack of transparency into memory use, RAM management

6. Weak support for categorical data

7. Complex groupby operations awkward and slow

8. Appending data to a DataFrame tedious and very costly

9. Limited, non-extensible type metadata

10. Eager evaluation model, no query planning

11. "Slow", limited multicore algorithms

Polars ticks all of Wes McKinney pandas pain points
Written in Rust Polars can get along with minimal computation and memory footprint

V2

V2

V2

V2

V2

V2

Polars is great for its speed, but can’t replace pandas (yet)
My personal list of things I love and miss in polars

• Dot-Notation to autocomplete column
names (especially within notebooks)

• No Plotting API
• Compatibility with other libraries (scikit-

learn, seaborn, pytorch…)
• The typing efficiency within the API

Things I miss in PolarsThings I love about Polars

• The speed!!!
• The support of eager and lazy mode
• Expression API and over-keyword
• That API-code is nicely structured

Good first Use-Cases:
• datawrangling pipelines
• Non-trivial feature-engineering

Not recommended Use-Cases :
• Data exploration
• Python Glue-Code projects

Q&A

Further reading:
• Ritchie Vink giving some speed insights into Polars
• Apache Arrow and the "10 Things I Hate About pandas"
• “Polars in a nutshell” talk by Ritchie Vink
• Comparison of Pandas 2.0 with other frameworks
• Comparison of many popular dataframe libraries

Tip: Next Talk here will also
be on Polars and DuckDB

Link to the slides:

https://www.ritchievink.com/blog/2021/02/28/i-wrote-one-of-the-fastest-dataframe-libraries/
https://wesmckinney.com/blog/apache-arrow-pandas-internals/
https://www.youtube.com/watch?v=XAU3dUjaX38
https://airbyte.com/blog/pandas-2-0-ecosystem-arrow-polars-duckdb
https://www.datarevenue.com/de-blog/pandas-skalieren-ein-vergleich-von-dask-ray-modin-vaex-und-rapids

Backup: Speed Comparison Pandas 2.0

https://duckdblabs.github.io/db-benchmark/https://twitter.com/RitchieVink/status/1632334005264580608

