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Transformer Meets Time-Series

Temporal Fusion Transformer zur Vorhersage von Warmebedarfen bei Iqony



Our Journey

N o o e N

A brief introduction to Igony

Getting familar with the Use Case

Let’s talk about the initial situation and ARIMA models
Let’s talk about Recurrent Neural Network

Let’s talk about Temporal Fusion Transformers
Summary & Outlook

Discussion
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Brief intoduction to lgony

Operator of multiple decentralized energy systems:

Vorlaufige MW, MW,
einer der groRten Fernwarme- Vorreiter in effizienter Kennzahlen 2020
\/ versorger und Contracting-Anbieter, Erzeugung mit Erfahrung
besonders fir Industrie und groRe mit unterschiedlichen Biomasse
———— Liegenschaften in Deutschland Erzeugungstechnologien seit 2002 55 148
e Grubengas
: . 2l seit 1908 166 13
Betreiber von uber 100 dezentralen
Anlagen (Strom, Warme, Kalte, Betreiber von Windenergie- - .
Druckluft, Dampf), auch in Verbindung anlagen in Deutschland, 3\, Geothermie i 145
mit Erneuerbaren Energien fur die Frankreich und Polen AN seit 1994
Industrie und Kommunen
/\ Dezentrale Anlagen
Qg seit 1961 ” 74
\/ Betreiber von 39 Warme- Partner bei mehr als 10 2R Wind
versorgungen inkl. der kommunalen Warme- % . 231 -
Fernwarmeschiene Saar versorgungen in Deutschland seit 2010
Gesamt 528 1.180

© STEAG New Energies GmbH



Use Case: District Heating Network Saar (FVS)




Use Case: Trading on the Energy Market

Weather Forecast: t-1d Heat Demand: t-1d

{g Temperature Forecast: ) mn

v Heat Demand Forecast:
~2aT UII]-' ~ 20 MWh Electricity

\

(Day—Ahead Markt: t-1d
o

New Plant Operational Plan:
i 20 MWh

Sale on Day-Ahead Market:
20 MWh
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Weather Forecast: t - 15 min

(E' Temperature Forecast:
~23%C

y

Heat Demand: t - 15 Min

&L Heat Demand Forecast:
H]I]J ~ 15 MWh Electricity

J

Intra-Day Markt: t-15min
o

New Plant Operational Plan:
,B_B_, 15 MWh

Sale on Intra-Day Market:

Day-Ahead Market Day-Ahead Market

>

15 MWh

Buyback on Intra-Day Market:
Market: 20 MWh

Intra-Day Market

Timeline
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Let’s talk about
the Initial situation and ARIMA
Models



Use Case: Initial Situation FVS

-
& Complexity

Due to a network of consumers and
producers, the Saar district heating
system is to be regarded as an
extremely complex product

A4

Data Science

Insights will be gained from data to
provide sufficient understanding of the
complex relationships that modulate
heat demand
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-

Existing Forecasting Tool

Due to its complexity, an existing
forecasting tool provides only
inadequate forecasts for the Saar
district heating network.

~N

.<____-

In-house Development

On the basis of knowledge gained, own

model development and provision will be
aimed at in order to improve the

prediction accuracy




Auto Regressive Integrated Moving Average

Description Speciality

How it works
Usage
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ARIMA Model for Heat Demand Forecasting
) ‘{fExogenous Regressors )

Historical Time-Series

Time series of historical energy demand Q Calculation of Fourier terms assuming daily
e Specific for each District Heating ... N\ periodicity:
System Fitting of ARIMA-Model e Temperature forecast

*  Sampling interval of 15 min Auto-ARIMA Model for heat demand forecasts *  Weekdays and holidays
\_ ) over a horizon of 4 days: \_ )
* [ntervals of 15 minutes each

* No seasonality
* No stationarity
* (Optimization according to Powell

\_

J

Forecasts

Heat demand forecasts for the next 4 days
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Potential parameters to enrich data basis

Weather

Temperature (API)
Air Pressure (API)
Humidity (API)

Wind Speed (API)
Wind Direction (API)
Sun Hours (API)

) Producer
i T
* Price per kWh(SNE)
* Heat Energy Minimum (SNE)
* Production Planning

g Datetime

Demographics

m Consumer w
Production Planning (SNE) * Population (API)

Number of Households (SNE) * Average Income (API)
Investment in Solar Systems (API) * Average Age (API)
Number of Solar Systems (API)

Conclusion or termination of contracts

Q Others

Weekday * Covid-19 Incidence (API)
Month

Quarter

Public Holidays (API)

School Holidays (API)
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Let’s do a little recap on the ARIMA Model

‘ Findings

Other weather parameters tend to have no further added value

* Production planning has little or no influence on ARIMA Model

* (ther tested models benefits enormously from production planning

* Temperature forecast error has significant influence on heat demand
forecast

* Severe Artifacts found in data of the historical heat demand

\.
Qldeas and opportunities

* Temperature forecast error as an additional feature
* Production planning as a promising feature

\.

r
\_

Problem of ARIMA Models

* ARIMA model shows weaknesses for complex, multivariate problems
leading to insufficient forecast for such cases




Let’s talk about
Recurrent Neural Networks
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Sequence2Sequence Model

Description
A Family of machine learning models to transform sequences
(time-series) into other sequences.

How it works

The model architecture consists of two submodules - an encoder
and decoder. Both the architecture of the encoder and the decoder
are based on so-called Recurrent Neural Networks. The encoder
network transforms the input sequence into a representative
encoded representation. The decoder takes this representation,
decodes it, and generates the desired output sequence step by
step

3
sclieneers -
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Speciality

Sequence2Sequence models combine several advantages. Based
on neural networks, they are able to capture complex correlations
even between several input sequences. Probably the biggest
advantage is that the length of the input sequence can differ from
the length of the output sequence.

Usage

Applications are mainly found in the field of natural language
processing. Sequence2Sequence models are used there primarily
for machine translation. Further applications can be found, for
example, in the prediction of time series.



smeneers’h

DRIVEN BY DATA

Bidirectional Seq2Seq LSTM Model

Output

Legend
( ™)
X =Input Features

Luong Attention Mechanism

R =Regressors

hf hfi hfe;

g

Y =Forecast

H =Hidden States

™\ C =Output States

f=Forward

b = Backward

+=_Concatenation

2@

Decoder

Encoder



Heat Demand [kW]
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Forecast could be improved significantly

Comparison of heat demand forecast ARIMA vs. LSTM (May 2022)

Forecast based on ARIMA Forecast based on LSTM
MAPE: 15.8% MAPE: 9.59%
Ground Truth == Forecast ARIMA == Ground Truth Ground Truth mssm Forecast LSTM === Ground Truth

Heat Demand [kW]

00:00
May 4, 2022

12:00

00:00 12:00
May 4, 2022

Datetime Datetime

Q Tested Models
® Random Forests ® 1D-CNN ® Bidirectional Seq2Seq
®  FBProphet ® LSTMs/GRUs ® Time-distributed Attention based Seq2Seq
® B NeuralProphet ® 1D-CNN-LSTM ®  Time-distributed Bidirectional LSTM
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... but is It already the end of our journey?
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No since...




A glimbse on our journey

Heat Demand Forecast

e

SSS Mo Tue Wed Thu




New Business Requirements

)
Heat D dF

Mo Tue Wed Thu




Solution




Rollout is not as simple as it seems!

Heat Demand [kW]

Historical Heat Demand of Indiviual District Heating System at Iqony

[l

T

Jul 2019

Jan 2020

i

Jul 2020

Jan 2021

Timeline

Jul 2021

Jan 2022

District Heating System
—— Darmstadt Lichtwiese

Darmstadt Stadtmitte

— FVS

Furstenwalde

—— Geithain

Jul 2022

——— Groditz

,r._,f.,.!\«“‘ “! gdwﬂ_ . '?

Jan 2023
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,@ Hurdles to overcome

Need of maintaining multiple models

No learning from interrelationships between
different modalities

Deterministic forecasts are not suitable for any
kind of risk assessment

Lack of interpretability

Deterministic forecasts are not suitable for any
kind of risk assessment

Hyperparameters can not be adopted

How to handle data bases to small for a
sufficient model training

~

)




What are we looking for?

IOa LSS

E=RE (

o v v

Dﬂs — & 5 b — _)[&
IOa LS o o !
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Let’s talk about
Temporal Fusion Transformers

for Interpretable
Multi-horizon Time Series Forecasting
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Temporal Fusion Transformer

How does it work?

Forecast Time (t)
Prediction Intervals

Point Foreca{‘i

|
|
|
|
|
|
|
|
|
| >
Past Targets Lo % -
|
|
|
|
|
|
|
|

Source: https://arxiv.org/abs/1912.09363
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Temporal Fusion Transformer

Architecture

QuantileForecasts{ Yi+1(0.1) 9¢4+1(0.5) 9¢41(0.9) wou Yt47(0.1) G4+(0.5) y147(0.9)

Dense
Temporal Fusion Decoder
Position-wise -
Feed-forward
. Gate
Temporal !
Self-Attention
d D dD dA 0O
N,
Static R o -
Enrichment y A Y A A

Static
Covariate
Encoders LSTM

LSTM ] LSTM
Encoder ) Decoder

LSTM

Encoder Decoder

Variable Variable

Variable Variable
Selection Selection

Selection Selection

Variable
Selection

S | '
e Xt ‘:C t+1 xt‘*‘Tma.:E,
L J
T
Metadata Past fnputs Known Future Inputs

Source: https://arxiv.org/abs/1912.09363



Temporal Fusion Transformer

Temporal Processing

QuantileForecasts{ Yi+1(0.1) 9¢4+1(0.5) 9¢41(0.9) wou Yt47(0.1) G4+(0.5) y147(0.9)

Dense

Temporal Fusion Decoder

Position-wise
Feed-forward

Temporal
Self-Attention

Static
Enrichment

Static

Covariate

Encoders LSTM

Encoder

LSTM ] LSTM

LSTM
Encoder ) Decoder

Decoder

Variable
Selection

Variable

Variable Variable Variable

Selection Selection Selection Selection
8 I I
L J
T
Metadata Past I'nputs Known Future Inputs

Source: https://arxiv.org/abs/1912.09363

*

*
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Seq2Seq layer is used for local processing,
whereas the attention block captures long-term
dependencies.
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Temporal Fusion Transformer

Variable selection networks

QuantileForecasts{ Yi+1(0.1) 9¢4+1(0.5) 9¢41(0.9) wou Yt47(0.1) G4+(0.5) y147(0.9)

Dense

Temporal Fusion Decoder

Position-wise
Feed-forward

Temporal
Self-Attention

Static
Covariate
Encoders LSTM

LSTM ] LSTM ' LSTM

Encoder Encoder ’ Decoder ’ o Decoder
Variable T —— Variable variable |l EEEEERE Variable selection networks select relevant input
Selection Selectio Selectio va I‘ia bles at ea Ch t| me Step.
('9 i 1 i 1 i 1
Static Xt_]\‘ .. Xt ‘:Ct+1 i xt+7‘,’l(l:[ )
Metadata ‘ Past I'nputs ' Known Future Inputs

Source: https://arxiv.org/abs/1912.09363



Temporal Fusion Transformer

Static covariate encoders

QuantileForecasts{ Ut+1(0.1) 9341(0.5) 9,41(0.9) ...

Dense

Yt+7(0.1) 9p+7(0.5) 947(0.9)

Temporal Fusion Decoder
Position-wise
Feed-forward
- Gate
Temporal !
Self-Attention
d D D ad O

N. .

................................................................................................................. l
A A \ A A

Static

Covariate
Encoders

Variable
Selection

LSTM
Encoder

LSTM
Encoder

Variable
Selection

Variable
Selection

LSTM
Decoder

Variable
Selection

LSTM
Decoder

Variable
Selection
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Static features are integrated throughout the
whole architecture to control how temporal

dynamics are modeled.

Source: https://arxiv.org/abs/1912.09363

S | '
e Xt ‘:C t+1 Lt+Tmax ,
J
Metadata Past I'nputs Known Fu{ure Inputs



Temporal Fusion Transformer

Quantile Forecasts

Temporal Fusion Decoder

Quantile Forecasts { Yt+1(0.1)

Y+1(0.5) 9.41(0.9) ...

J1+7(0.1) G47(0.5) Guir(0.9)

Position-wise
Feed-forward

Temporal
Self-Attention

Static
Covariate
Encoders

LSTM
Encoder

Variable
Selection

Variable
Selection

LSTM
Encoder

LSTM
Decoder

Variable
Selection

Variable
Selection

LSTM
Decoder

Variable
Selection

S | '
o Xt ‘:C t+1 Lt+Tmax ,
L J
T
Metadata Past Inputs Known Future Inputs

Source: https://arxiv.org/abs/1912.09363
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Quantile Loss enables prediction intervals to
determine the range of target values at each
prediction horizon.
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Temporal Fusion Transformers

Quantile Loss

/Let E,(¥;,y;) be the quantile loss for the gth quantile and where y; is

the real value and y; the forecast for the gth quantile the quantile loss
can be defined as:

~

E,3uy) =90 —yi) if yi = ¥i
=@-D@i—y) ify >y
OR

E (i, yi) = max[q(V; —y), (q — D@ — yi)]
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Recommended Libraries for the Implementation

L .- z’t
.!.ﬁmm&s “-- B

!w:‘ :

ot SRS SRS

Darts

PyTorch Forecasting by Unit8.
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Temporal Fusion Transformers

Implementation with PyTorch Forecasting

v |timeseries = TimeSeriesDataSet( /TimeSeriesDataSet acts as interface between A
8 dfs_train,

....... data and model:
9 **ts_kwargs RRRLLT T . . .
oy TTTE T, —_— ® Contains information about features (static,
11 | #create sampler for training and validation o pastandfuturecovaﬂates)

12 |train_sampler, validation_sampler = get_sampler () ® Defines dynamic features (e.g. relative time
13 | #create corresponding dataloaders : index)
14 |train_dataloader = timeseries.to_dataloader(train=True, sampler=train_sampler, ° :

", xtrain_dataloader_kwargs) Sets input and output lengths of samples
15 |val_dataloader = timeseries.to_dataloader(train=False, sampler=val_sampler,

o *val_dataloader_kwargs) TimeSeriesDataSet creates samples, which can
16 |#create callbacks be used for training and validation.
17 |callbacks = [] \\‘ W,

18 | #monitor loss on wvalidation for early stopping

19 | callbacks.append(EarlyStopping(monitor="'val_loss', mode='min'))

20 | #save model for best checkpoint

21 | callbacks.append(ModelCheckpoint (monitor="'val_loss'))

22 | #create trainer for orchestrating training

23 |trainer = pl.Trainer(callbacks=callbacks, **trainer_kwargs)

214 | #create model which copies some parameters from TimeSeriesDataSet (e.g. encoder
— length)

25 |model = TemporalFusionTransformer.from_dataset(timeseries,**model_kwargs)

There is a great tutorial:
https://pytorch-forecasting.readthedocs.io/en/stable/tutorials/stallion.html



Temporal Fusion Transformers

Example - Samples from TimeSeriesDataSet
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Komponente time idx_first | time idx last | time idx _first prediction
0 DILLINGEN 0 767 384
1 DILLINGEN 1 768 385
2 DILLINGEN 2 769 386
534914 WALLERFANGEN | 133724 134494 134111
534915 WALLERFANGEN | 133725 134495 134112

Index example for samples with input and output length of 384 and static covariate
Komponente.
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Temporal Fusion Transformers

Implementation with PyTorch Forecasting

4 )
. ltimeseries - TimeSeriesbataSet( Sampler defines a strategy for drawing samples:
. dfs. train, ® Default for training samples: Random
o sets_kvargs e sampling without replacement
o () e ® Default for validation samples: Sequential
11 #create sampler for training and validation T sampling WithOUt replacement
train_sampler, validation_sampler S/
create corresponaing . .
14 |train_dataloader = timeseries.to_dataloader(train=True, sampler=train_sampler, :
_irtrain_dataloader kwargs) T L Dataloader builds batches of samples for each
15 |val_dataloader = timeseries.to_dataloader(train=False, sampler=val_sampler, . EDOCh. )
L — **val_dataloader_kwargs)

16 | #create callbacks

17 |callbacks = []

18 | #monitor loss on wvalidation for early stopping

19 | callbacks.append(EarlyStopping(monitor="'val_loss', mode='min'))

20 | #save model for best checkpoint

21 | callbacks.append(ModelCheckpoint (monitor="'val_loss'))

22 | #create trainer for orchestrating training

23 |trainer = pl.Trainer(callbacks=callbacks, **trainer_kwargs)

214 | #create model which copies some parameters from TimeSeriesDataSet (e.g. encoder
— length)

25 |model = TemporalFusionTransformer.from_dataset(timeseries,**model_kwargs)

There is a great tutorial:
https://pytorch-forecasting.readthedocs.io/en/stable/tutorials/stallion.html



Temporal Fusion Transformers

Implementation with PyTorch Forecasting

10

11

12

13

14

15

timeseries = TimeSeriesDataSet(
dfs_train,
**ts_kwargs
)
#create sampler for training and validation
train_sampler, validation_sampler = get_sampler ()
#create corresponding dataloaders
train_dataloader = timeseries.to_dataloader(train=True, sampler=train_sampler,
— *xtrain_dataloader_kwargs)
val_dataloader = timeseries.to_dataloader(train=False, sampler=val_sampler,
— **Val_dataloader_kwargs)

(16 |#create callbacks )
17 |callbacks = []
18 | #monitor loss on wvalidation for early stopping
19 | callbacks.append(EarlyStopping(monitor="'val_loss', mode='min'))
20 | #save model for best checkpoint

(21 |callbacks.append(ModelCheckpoint(monitor="'val_loss')) )

22

23

24

25

#create trainer for orchestrating training

trainer = pl.Trainer(callbacks=callbacks, **trainer_kwargs)

#create model which copies some parameters from TimeSeriesDataSet (e.g. encoder
— length)

model = TemporalFusionTransformer.from_dataset(timeseries,**model_kwargs)

There is a great tutorial:
https://pytorch-forecasting.readthedocs.io/en/stable/tutorials/stallion.html
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Callbacks allow to interact with the training

process, e. g.:

® EarlyStopping to abort trainings without
improvements

® ModelCheckpoint to save promising
checkpoints

When training on multiple GPUs, syncing of
metrics between threads is important!

J




Temporal Fusion Transformers

Implementation with PyTorch Forecasting

10

11

12

13

14

15

16

17

18

19

20

21

22

timeseries = TimeSeriesDataSet(
dfs_train,
**ts_kwargs

)

#create sampler for training and validation

train_sampler, validation_sampler = get_sampler ()

#create corresponding dataloaders

train_dataloader = timeseries.to_dataloader(train=True, sampler=train_sampler,

— *xtrain_dataloader_kwargs)

val_dataloader = timeseries.to_dataloader(train=False, sampler=val_sampler,

— **val_dataloader_kwargs)

#create callbacks

callbacks = []

#monitor loss on walidation for early stopping

callbacks.append(EarlyStopping(monitor='val_loss', mode='min'))

#save model for best checkpoint

callbacks.append (ModelCheckpoint (monitor="'val_loss'))

#create trainer for orchestrating training

23

24

25

trainer = pl.Trainer(callbacks=callbacks, **trainer_kwargs)

#create model which copies some parameters from TimeSeriesDataSet (e.g. encoder
— length)

model = TemporalFusionTransformer.from_dataset(timeseries,**model_kwargs)

There is a great tutorial:
https://pytorch-forecasting.readthedocs.io/en/stable/tutorials/stallion.html
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Training of model is done by Pytorch Lightning
Trainer.




Heat Demand [kW]

Temporal Fusion Transformers

Pitfalls with Data Fusion - Scaling

Historical Heat Demand of Individual District Heating Systems at Iqony

District Heating System
——— Darmstadt Lichtwiese
—— Darmstadt Stadtmitte
— FVS

Flrstenwalde
—— Geithain
—— Groditz

[T 1

Jul 2019

~ T

[

Jan 2020 Jul 2020 Jan 2021 Jul 2021 Jan 2022 Jul 2022 Jan 2023
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/
’E Pitfall Scaling

As Quantile Loss does not scale,
it gives preference to time
series with higher amplitudes.

« Training is ignoring time series
with lower amplitudes.

Scaling is mandatory!

\




Heat Demand [kW]

Temporal Fusion Transformers

Pitfalls with Data Fusion - Sampling

Historical Heat Demand of Individual District Heating Systems at Iqony

|

District Heating System

——— Darmstadt Licl

htwiese

—— Darmstadt Stadtmitte

— FVS

Firstenwalde
—— Geithain
—— Groditz

~ T

T T 1

Jul 2019 Jan 2020 Jul 2020 Jan 2021 Jul 2021 Jan 2022 Jul 2022
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/,a Pitfall Sampling \

« As shorter time series provide
less samples, random sampling
results in imbalanced batches.

« Weighted sampling without
replacement fixes imbalance,
but samples from shorter time
series may be missing in later
batches due to exhaustion.

Weighted sampling with
replacement fixes group

\ imbalance. /




Heat Demand [kW]
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Temporal Fusion Transformers

Pitfalls with Data Fusion - Validation

Historical Heat Demand of Individual District Heating Systems at Iqony

e (@ pitall valigation

—— Darmstadt Stadtmitte
— FVS

— Fomtemnide Validation may be challenging:
oo « How to handle shorter time
series, when withholding
samples for validation reduces
training samples significantly?
« Do we use the same validation
periods for all time series?

T 1 i T

Jul 2019 Jan 2020 Jul 2020 Jan 2021 Jul 2021 Jan 2022 Jul 2022 Jan 2023

~ T
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Temporal Fusion Transformer: Results

Probabilistic Forecasts for a Better Decision Making

Fuerstenwalde - MAPE 13.148

Darmstadt.Lichtwiese - MAPE 8.897

Attenti

Attention
Obsen — Observed
Predic 0.006 — Prediction
0.02 75.00% ;(5) gz: con;wgence
5016100 confidence
98.00% confidence
98.00%
0.005
- g
B 0.015 =
= o
c
o
§ £
E 5]
8 | | ' e
| .01 3
2 I ( 0.0 3
3 |
T 1 ' ' |
I | '
J TR
h ‘ 0.005
1 0.002
0 Aug 2 Aug 3 Aug 4 Aug s Aug 6 Aug7 Aug8 Aug 9
2022
Apr 29 Apr 30 May 1 May 2 May 3 May 4 May 5 May 6
2022
FVS - MAPE 9.952
Attention
— Observed
0.012 Prediction
75.00% confidence
90.00% confidence
0.01 98.00% confidence
Z
5 0.008
c
]
E
]
[a]
- 0.006
©
@
I
0.004
0.002
Apr 29 Apr 30 May 1 May 2 May 3 May 4 May 5 May 6

2022




Attention

Temporal Fusion Transformer: Results

Great Plots coming along with the library provide a great insights!

Attention

0.006 1

0.005 1

0.004 -

0.003 1

0.002 1

day_cos

—400 -350

-300

250 -200 -150 -100
Time index

=50

6 temp
prog_trend
month_cos

Temp_Prognose_Date -3
month_sin
weekday _cos
day_sin

year_sin
temp_trend
temp_prog_diff -3
specialday

year
relative_time_idx
value

year_cos

weekday_sin

Encoder variables importance

Temp_Prognose_Date_-3
prog_trend
month_cos

weekday_sin
day_cos
month_sin
year_sin
day_sin

weekday_cos

temp_trend
specialday
year_cos
year

relative_time_idx

0 15 2 2 3
Importance in %

35
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Decoder variables importance

10 15 20 25 30
Importance in %
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Temporal Fusion Transformer: Results

A Final Comparison

ARIMA vs. TFT (Forecast Horizon of 4 Days without Retraining)

Model
B ARIMA
B TFT Specific Best NF
W TFT Best NF

18

16

14
12 12.71
11.88
10
0 FVS

Averaged MAPE
S (o)) @

N

Groditz Furstenwalde Geithain Darmstadt Stadtmitte Darmstadt Lichtwiese

18.29
17.38
15.59
14.46
13.15
12.08

District Heating System

4 )
Q Training Insights

Attention Head Size: 3 ® Hidden Size: 64 ®  (GPU: 2x NVIDIA Tesla K80
* Dropout: 0.1 ® VM: Standard_NC12_Promo * Epochs: ~ 80
* Hidden Continous Size: 16 (12 cores, 112 GB RAM, 680 GB disk) ~ ®  Training Time: ~24h
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summary & Outlook

~
M Overall Take Aways

ARIMA model is a low hanging fruit -> fast and easy implementation leads to direct revenue
» LSTMis able to outperform ARIMA models on complex, multivariate problems
 LSTM can be highly adapted to your business requirements steadily increasing the business revenue
« TFTisespecially strong when there are several modalities involved in your forecasting problem
» TFTisable of solving the cold-start problem for new modalities by making use of data fusion
e TFTis highly interpretable and provides prediction intervals for a better decision making
» Do not use models like LSTMs or TFTs if underlying problem is not that complex or you do not have much data
» Do not use models like LSTMs or TFTs if your results are already great and inference time doesn't matter

( N
Q Outlook

 Generation of additional revenue by migrating the TFT to the production environment leading to improved heat
demand forecasts for multiple district heating systems at Iqony
 Using the TFT as a tool to increase the revenue through more efficient trading in the intra-day energy market.
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Get in Contact!

We are happy about an exchange.
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Martin Danner
Data Scientist

martin.danner@scieneers.de

Mobil +49 15155152 568

inik

Jan Hollmer
Data Scientist

jan.hoellmer@scieneers.de

Mobil +49 15155152 562

ink

More about us on www.scieneers.de
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Discussion

Juestions?




